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An expression is obtained for the mean brightness of a flat layer with a random 
temperature distribution that is valid for arbitrary amplitudes of the absorp- 
tion coefficient and Planck's function fluctuations. The limits of applicability 
are set for the approximation of optically thin fluctuations. 

it is known [i] that the mean thermal radiation of turbulent flows differs from the 
radiation computed over mean temperature and concentration fields. The influence of turbu- 
lent fluctuations of the thermodynamic flow parameters on radiation was examined in [1-9]. 
However, the case of large fluctuations was not investigated in these papers. 

Turbulent heated gas jets are an important class of emitters. Their main radiation, 
associated with deexcitation of the hottest near-axis zone, is concentrated in spectrum 
sections where the lengths of the quantum transits are commensurate with or exceed the trans- 
verse jet dimension. Taking into account that the external scale of turbulence Z governing 
the correlation length of the fluctuating parameters, is an order less than the characteris- 
tic flow dimension, we obtain that the fundamental radiation occurs at frequencies for which 

<k> t~ I, (1) 

where k is the absorption coefficient, and the angular brackets denote taking the average 
over the ensemble of fluctuation realizations. 

An optically thin fluctuation app~oxlmation (OTFA) is proposed in [i] for the analysis 
of the mean radiation from volumes with dimensions L satisfying the inequality 

L ~ l, (2) 
where a spatial inhomogeneity in the temperature and concentration of fluctuation origin 
with dimension ~l is understood to be a pulsation. The OTFA is based on neglecting the cor- 
relation between the absorption coefficient and the radiation intensity, resulting in the 
following expression for the mean intensity: 

i x 

<,> =j'(kB>exp(--~<k>dN)dx, (3) 

0 0 

where B is the Planck function. 

The expression (3) contains local averages and being distinguished by sufficient simpli- 
city describes a broad circle of situations of importance from a practical viewpoint, how- 
ever, its boundaries of applicability have not yet been established. 

An attempt is made in this paper to set up the OTFA limits of applicability and to de- 
termine the average radiation in a case when the mentioned approximation is not valid. 

The instantaneous thermal radiation intensity is determined by the expression 
i x 

I = i' kB exp (-- ~ kdy) dr,. (4) 
o 

Denoting the fluctuating part of the random variables with a prime, we represent the 
mean value of the integrand in the form 

k dy)/, (5) 
0 0 
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where 

(m) - -exp ( - - . i  < k> dg) ~exp (--.I' k'd@). (6) 
0 0 

The fluctuating part of the optical depth can be considered as the sum of a large number of 
uncorrelated components for x ~ ~, which permits considering it approximately as a normal 
random variable 

x x 

< x )  ~ e x p  (--- i  ( k ) d g @  .I <k'") ldy). (7) 
0 0 

I t  f o l l o w s  f rom (7) t h a t  t h e  mean t r a n s m i s s i o n  i s  d e t e r m i n e d  by the  mean a b s o r p t i o n  co-  
e f f i c i e n t  under  t he  c o n d i t i o n  

0 0 

To estimate the correlation of the emissivity (the quantity (kB)') at the point x and 
the transmission along the track between 0 and x, we separate the integral representing the 
optical depth into the sum of two integrals, one of which with the integration interval of 
length I adjoining the point x correlates with (kB)' while the second does not correlate 
with the quantity mentioned. Taking into account the smallness of the optical depth of a 
layer of thickness ~ that follows from (8) and (I), we can write 

{,- i <-- ) 
0 x--I  0 

Assuming its value for z = x as the characteristic value of the triple correlation in (9), 
we arrive at the following estimate 

x 

K ~  ( (k(x)B (x))' k' (x)) lexp( i < k':) l @ )  ( i0)  
0 

Comparing (10) wi th (5) - (7)  y ie lds  the condi t ion for  which the co r re la t i on  between the emis- 
s i v i t y  and the transmission 

< (~B)' k' > 1 ~ < k~ > ( n )  

can be neglected. The fo l lowing form 

0 0 

<k~B>t~ <kB> (13) 

can be accorded to condi t ions (8) and ( i i )  by taking account of ( i ) .  

Therefore, in add i t ion to condit ions (1) and (2), the two condi t ions (12) and (13), 
which constrain the magnitude of the absorption coefficient fluctuations and of the Planck 
function in certain cases, must still be satisfied for the OTFA to be valid. These addi- 
tional conditions are known to be satisfied for optically thin layers and start to play a 
greater and greater constraining role as the mean optical depth of the layer grows. The 
most rigorous constraints actually occur for optical thicknesses ~i, because the contribu- 
tion of deeper layers is ordinarily small in the departing radiation. 

The dependences of the absorption coefficient and the Planck function on the tempera- 
ture fluctuations can be represented approximately in the form 

k = k0 exp (~0, (14) 

B = Bo exp (~t), (15) 

where ~ and 8 are, respectively, the ratio between the transition excitation energy and the 
quantum energy expressed in degrees, and the mean temperature, and t is the dimensionless 
(referred to the mean temperature) temperature fluctuations. Taking the normal distribu- 
tion law for t, we obtain from (12) and (13) for a homogeneous layer of thickness L for 
<k>L ~ i: 

/exp(= ~ < t 2 ) ) ~ L, (16) 

lexp(~(~ + ~) < t 2 > ) ~ L. (17) 
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Fig. i. One possible realization of the spatial 
realization of the absorption coefficient. 

Taking into account that I ~ 0.1L, it can be concluded from (16), (17) that the OFTA is 
valid for the computation of the radiation of volumes with optical depth not exceeding 
several units, for a(~ + B)<ti>~l. It is hence seen that the maximal value of ~ for which 
the OFTA is still applicable is reached for B = 0 and equals ama x = <ti>-*/2 For 20% temp- 
erature pulsations ~max = 5. The values of 8 can be arbitrary. However, as ~ grows, the 
values of ~ allowable from the viewpoint of the applicability of the OTFA are diminished in 
conformity with (17). 

On the wings of the molecular bands where absorption is due to transitions from an 
excited vibrational level, it follows from the resonance condition that ~ ~ 8. At the maxi- 
mum of the dependence of the Planck function on the wavelength, ~ = 5, Therefore, the values 
of a and 8 of interest can reach 10-15, which can results in spoilage of the condition of 
OTFA applicability for the typical quantity <t/~-~> = 0,2 and sufficiently large optical depths 
of the layer. Consequently, a computation of the mean radiation of turbulent flows for large 
fluctuations in the absorption coefficient and the Planck function is an urgent problem. 

Since its exact solution is impossible at this time, models of radiating media that per- 
mit an analytic solution to be obtained for arbitrary dependences of the Planck function and 
the absorption coefficient on the temperature play an important part in clarification of the 
qualitative pattern of the phenomenon as well as in setting up the limits of applicability 
of approximate methods. Let us examine the model of a medium in which the absorption coeffi- 
cient depends only on the temperature and is described by a generalized telegraph process 

[10]: 

k (x) = • (18) 

where both the subscript n(0, x) representing the number of points of the Poisson flux inci- 
dent in the interval [0, x], and the quantities ~i for fixed subscripts are random. The 
quantities zi are statistically independent and characterized by distribution functions in- 
dependent of the subscript. The absorption coefficient profile (18) is a sequence of sec- 
tions of constant random values. The lengths of the sections are also random. It is natural 
to select the mean length of one section equal to I. One of the possible realizations of the 
absorption coefficient profile is represented in Fig. i. 

The theory of a generalized telegraph process results in [i0] 

x 

o f (19) 
+ l  - l  < • 2 1 5 2 1 5  ) ( x - - y ) ] > @ ( y ) d y ,  

o 

where the mean transmission r is determined by (19) for kB = I: 

(x) = < exp [-- (• @ l-1) x] > @ l-1 i < exp [--  (• -k l-1)(x - -  Y)] > ~ (g) dy. (20) 
o 

Integrating (19) with respect to x between 0 and L, we obtain an expression for the mean 

brightness of the layer 

<I> = ( •215215  - l [ l - e x p [ - ( •  - l )  L]]>@ (21) 
L 

+ l-I ,f ~ (x) ( • (• (• @ 1-1) -~ [1 - -  exp [--  (• @ I - I)  (L - -  x)]] } dx. 
0 
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Analysis of the Laplace transform of the solution of the integral equation (20) 

[ ( ~ ) =  exp( - -~x)~(x)dx  = ~ - i - ~ •  - ~ + ~  / \ ~1 -1 
", • 2 4 7  / 

shows t h a t  i n  t he  ca se  o f  f u n d a m e n t a l  i n t e r e s t  o f  s t a t i s t i c a l  t r a n s m i s s i v i t y  o f  an i n d i v i d u a l  
p u l s a t i o n ,  whose c o n d i t i o n  i s  t he  i n e q u a l i t y  

< •215 4- I-~) -1 > { 1, (23) 

the asymptotic ~(x) has the following form for x >> 1 

�9 (x) = exp [-- ( • @ • -~ ) 1. (24) 

S u b s t i t u t i n g  (24) i n t o  (21) and t a k i n g  a c c o u n t  of  t he  i n e q u a l i t i e s  (23) and (2 ) ,  we o b t a i n  
an expression for the mean brightness 

. 1 - - e x p  - - N  • 
( I > - - .  1 + •  1 + •  I @ •  ' ( 2 5 )  

where N = L/l is the mean number of pulsations per light path. 

The physical meaning of the quantities in (25) can be clarified by using the exponen- 
tial distribution law for the spacing between adjacent points of the Poisson flux. The 
transmission of a single homogeneous section averaged over the length equals (i + ~l) -:. 
Therefore, the quantity < xl(l + • -~ > has the meaning of average absorptivity of a homo- 
geneous section, or one pulsation. The spatial correlation of the fluctuating quantities 
in turbulent media results in the fact that a rise in emissivity of a certain volume element 
is accompanied by an increase in absorption in its neighborhood. This circumstance is re- 
flected in the quantity Ax<• + • which is the mean emission being generated per 
length element Ax and passed through a homogeneous section with temperature equal to the 
temperature of the emitting volume. The quantity <• + • that reflects the contri- 
bution of a section of length 1 to the mean emission of the layer can be interpreted as the 
mean brightness of a pulsation. 

The OFTA (3) follows from (25) if the quantity • can be neglected in the denominators 
of the expressions for the absorptivity and brightness of one pulsation 

( I > = ( xB > ( • ) -l [I - -  exp (-- ( • > L)]. (26) 

The conditions for going from (25) to (26) agree with (12) and (13). 

Let us turn to the case of large fluctuations in the absorption coefficient and Planck 
function, and let us consider how the mean radiation changes as the concentration of the 
emitting substance grows. The condition of statistical transparency of the layer 

N (  • -~ • > <i (27) 

is satisfied within the limit of vanishingly small concentrations and the equality 

< • @ • - I  > --~ < • > (28) 

is valid, resulting in the expression 

( I > : N  ( • ) ,  (29) 

which is linearly dependent on the concentration and in agreement with the corresponding 
OFTA limit case because of satisfaction of conditions (12) and (13). 

As the concentration grows in a medium with strongly fluctuating optical characteris- 
tics, the equality (28) is spoiled earlier than the condition (27) since the sharp tempera- 
ture dependenc e of the Planck function increases the contribution, as compared with (27), of 
the high temperature values to the averaged quantities. In this case the dependence of the 
emission on the concentration becomes weaker as compared with the linear dependence 

< 1 > =N ( • (1 § • >, (30)  �9 

which is a result of the correlation between the emission at a point and the absorption in 
its neighborhood. 

As the concentration grows further, the fraction of time during which the pulsation 
remains in the state of opacity increases. Two cases can here be realized, depending on 
which occurs earlier, saturation of the emission of a single pulsation or spoilage of con- 
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dition (27). For sufficiently sharp dependences of the Planck function and absorption co- 
efficient on the temperature, when the fundamental contribution to the emission by one pul- 
sation is given by temperature fluctuations for which the pulsation is opaque and emits as 
a black body, the first case holds. As estimates show, on the basis of (14), (15) and the 
normal distribution law of the temperature pulsations, the layer statistical transmissivity, 
whose condition (27) weakly depends logarithmically on N for af<t2> > i, holds for N = I0 
for 

l n k 0 l ~ - -  ] , 8 ~ F  ( t ~ ) ,  (31) 

while the saturation of the emission of one pulsation occurs for 

l n k o / ~ - - ~ ( t  2 > + 1 . 8 ~ V  i t  2 ) .  (32) 

In  t h i s  c a s e  t he  mean e m i s s i o n  o f  one p u l s a t i o n  e q u a l s  t h e  mean o f  t h e  P l a n c k  f u n c t i o n  
w h i l e  the  t o t a l  l a y e r  e m i s s i o n  c e a s e s  to  depend on t h e  c o n c e n t r a t i o n :  

if) = N<B) (33) 

A further increase in the concentration results in spoilage of inequality (27). Taking 
account of the smallness of the exponential term in (25), we obtain that in the case of 
saturation of one pulsation 

< I ) = < B ) [ ( • + x/) -1 ) ]-1 _~ < B ) n*, (34) 

where n* is the number of pulsations whose emission reaches the layer boundary without no- 
ticeable absorption, defined by the condition 

n* < • + •  -~ > ~ 1. (35) 

Therefore, if saturation of the emission of a single pulsation precedes spoilage of the 
condition of statistical transParency of the layer (27), then as the concentration grows the 
emission grows according to (29), (30), emerges on a plateau of limit values (33), and then 
drops in conformity with (34) at the instant of spoilage of the statistical transparency 
of the layer because of diminution in the number of pulsations inducing a contribution tO the 
emerging emission. 

If spoilage of the statistical transmissivity condition (27) occurs before saturation 
of the emission of individual pulsations, then the mean emission is defined by (30) while 
condition (27) is valid, and then can be represented by an expression analogous to (30) but 
with N replaced by n*. In this case the plateau of the limit values degenerates into a 
maximum whose magnitude is less than (33), while the location is governed by the competition 
of two factors, the growth of the emission of one pulsation and the diminution of layer 
transmission. 

Common to all the cases considered, starting with (29), is the fact that the mean emis- 
sion of the layer is represented in the form of the product of the emission of one isolated 
pulsation by their number defined by the depth of layer transmissivity. Consequently, the 
regime of mean emission formation examined above can be called the isolated pulsation regime. 

As the concentration increases further without limit, the quantum path becomes much 
smaller than the dimension of the pulsation and the layer emission defined by the surface 
temperature in this case becomes equal to 

<I> = (B). (36) 

This result is obtained from the expression (21), which is more general than (25), when 
taking account of the circumstance that the transmissivity ~ differs from zero just for 
values of the argument much less than I. 

A number of the fundamental features of the qualitative dependence of the mean emission 
on the concentration described above, particularly the isolated pulsation regime, can be 
obtained without reliance on model representations. Taking the approximate average of the 
expression (4) for the brightness with (2) taken into account for not too strongly absorbing 
media when the contribution of a layer of thickness ~ can be neglected in the total emission 

of the volume, we obtain 
t x x - - i  

< I > ~ . t ' < k B e x p ( - - , [  kdy))<exp(- -  j' kdy))dx. (37) 
t x - - l  0 
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Fig. 2. Mean thermal emission of a plane layer for different 
values of the parameters ~ and B. Solid lines are a computa- 
tion usin~ (25) and the dashes by using (26): a) B = 7.5; 
i) ~ = 2.5; 2) 7.5; 3) 12.5; b) ~ = 7.5; I) B = 2.5; 2) 7.5; 
3) 12.5. 

Taking account of the weak dependence of the first factor in the integrand on the coordin- 
ates, we write (37) in a form analogous to (25): 

l L .v--! 

I}, ~-- (kB exp (--I kdg)) .!" <exp (--.t' kdg)7 dx. (38) 
0 l 0 

For sufficiently low concentrations when the layer is statistically transmissive and 
the integral in (37) equals L, we obtain an expression analogous to (32): 

l 

0 

It follows from (38) that upon spoilage of the statistical transmissivity, a formula of the 
type (39) with N replaced by n* is valid, where /n* is the depth to which the layer is, on 
the average, transmissive, and equal to the value of the integral in (38). Therefore, the 
existence of an isolated pulsations regime is associated with the smallness of the correla- 
tion length as compared with the layer thickness and not with the selection of a specific 
model of the medium. 

Numerical computations of the emission were performed by using the dependences (14), 
(15) and the normal distribution function of the temperature fluctuations. The relation- 
ship between the size of the emitting layer L and the external scale of turbulence l, as 
well as the amplitude of the temperature fluctuations were selected as typical for a turbu- 
lent jet: N = L/Z = i0, < ~  = 0.2. In particular, there follows from the computation 
results that the plateau of limit values (38) in the dependence of the mean emission on the 
concentration is realized for a ~I0, B ~ 20. As the parameters a and B diminish, the pla- 
teau is transformed into a maximum whose magnitude is less than the value determined by 
(38). This maximum vanishes completely as ~ or B tend to zero. 

Computed dependences of the mean emission on the optical depth of one pulsation k0/, 
quantities proportional to the concentration, are represented in Fig. 2. As is seen from 
Fig. 2, the dependences of the emission on ko/ computed by means of (25) and (26) are dis- 
tinctive not only quantitatively but also qualitat5vely. The emission in the OFTA increases 
more rapidly than (25) and tends monotonically to the limit <•215 in contrast to the 
dependence (25) which passes through a maximum and tends to the natural limit <B> as the op- 
tical depth ko/ increases further. The slower growth of (25) as compared with (26) is due 
to the correlation between the emission of a volume element and the absorption in its neigh- 
borhood, which is not taken into account in the OFTA. 

Therefore, the results obtained in this paper can be applied to compute the emission of 
molecular gas jets in absorption bands and isolated spectrum lines, in particular, where the 
main emission occurs at frequencies with quantum path lengthon the order of the jet trans- 
verse dimension, and therefore, the constraints on applicability of OFTA (12), (13) are most 
rigorous. 
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NONUNIFORMITY OF THE VELOCITY FIELD OF A FLUX PASSING THROUGH A PACKED 

BED 

M. A. Gol'dshtik, A. M. Vaisman, 
A. V. Lebedev, and M. Kh. Pravdina 

UDC 532.546.2 

It is experimentally and theoretically shown that the sharp nonuniformity of 
the velocity at the outlet from a packed bed develops outside the bed as the 
flow passes through a curvilinear boundary. 

The strongly pronounced nonlocalized velocity nonuniformity in a flow emerging from a 
packed bed has been investigated experimentally [1-5] and theoretically [4, 6-8] for a per- 
iod of more than over 20 years. However, complete clarity with regard to the character and 
nature of this phenomenon has not yet been achieved. Experiments indicate that the nonuni- 
formity scale is more likely connected with the channel dimensions than with the bead dia- 
meter. Theoretical investigations are based on the assumption that the velocity nonuniform- 
ity develops within the packed bed due to changes in its porosity, caused by repacking or 
deformations. For all the diversity of the deformation models used, the interaction between 
the bed and the channel walls plays the central role. An alternative approach is based on 
the possibility that the deflection of the supporting grid may be the cause of velocity non- 
uniformity [5]. This possibility has not been investigated to a sufficient extent. There- 
fore, we have performed experiments in order to compare the effect of the walls with that 

of the supporting grid. 

The device for blowing air through a bed of beads (Fig. la) makes it possible to vary 
the deflection of the supporting grid and also introduce an additional wall, not connected 
to the grid, in the middle of the channel (Fig. lb). The device consists of a vertical, 
rectangular channel with a 120 x 60 mm cross section, which has three parts: the supply sec- 
tion 5, the operating section 6, and the outlet channel 7. The endfaces of the channel 
sections have flanges with rubber gaskets providing an airtight seal. Air is supplied to 
the channel from the main at pressures of up to 8 atm through branch pipe I and is then 
transmitted through swirler 2 and equalizer 3. In spite of its small dimensions, this in- 
let arrangement ensures relatively good equalization of the air flow ahead of the bead bed 
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